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MYT1L deficiency impairs excitatory neuron
trajectory during cortical development

Allen Yen 1,2, Simona Sarafinovska1,2, Xuhua Chen1,3, Dominic D. Skinner 4,
Fatjon Leti4, MariaLynn Crosby3,5, Jessica Hoisington-Lopez3,5, Yizhe Wu 1,2,
Jiayang Chen 1,2, Zipeng A. Li 1,2, Kevin K. Noguchi2, Robi D. Mitra1,3,7 &
Joseph D. Dougherty 1,2,6,7

Mutations reducing the function of MYT1L, a neuron-specific transcription
factor, are associated with a syndromic neurodevelopmental disorder. MYT1L
is used as a pro-neural factor in fibroblast-to-neuron transdifferentiation and is
hypothesized to influence neuronal specification and maturation, but it is not
clear which neuron types are most impacted by MYT1L loss. In this study, we
profile 412,132 nuclei from the forebrains of wild-type and MYT1L-deficient
mice at three developmental stages: E14 at the peak of neurogenesis, P1 when
cortical neurons have been born, and P21 when neurons are maturing, to
examine the role of MYT1L levels on neuronal development. MYT1L deficiency
disrupts cortical neuron proportions and gene expression, primarily affecting
neuronal maturation programs. Effects are mostly cell autonomous and per-
sistent through development.WhileMYT1L can both activate and repress gene
expression, the repressive effects are most sensitive to haploinsufficiency,
likely mediating MYT1L syndrome. These findings illuminate MYT1L’s role in
orchestrating gene expression during neuronal development, providing
insights into the molecular underpinnings of MYT1L syndrome.

Every brain cell shares the same genetic code, yet they exhibit a wide
range of functions. This diversity arises because different cell lineages
enact different gene expression programs that direct each cell in the
embryonicbrain todevelop in ahighlyorchestratedmanner.Disruption
of these processes can lead to abnormal neurodevelopment and result
in impaired cognition, communication, and adaptive behavior, as seen
in profound autism and intellectual disability (ID)1,2. Notably, many
genes associated with such neurodevelopmental disorders (NDDs) are
expressed early during brain development and are involved in gene
regulation and synaptic function3,4. Studies using post-mortem human
brain tissue provide evidence that cortical excitatory neurons are
commonly dysregulated in autism5,6. However, since these are end of
life studies, whether this is a cause or consequence of autism is unclear.

One NDD associated gene is Myelin Transcription Factor 1 Like
(MYT1L), which is highly expressed exclusively in postmitotic neurons
in the embryonic brain and sustained at lower levels throughout life7,8.
Early fibroblast-to-neuron transdifferentiation studies demonstrate
that MYT1L promotes neuronal cell fate by repressing non-neuronal
lineage programs9,10. Similarly, in vivo, epigenetic studies of normal
development show that MYT1L promotes neuronal differentiation by
recruiting the SIN3B repressive complex to promoters and enhancers
of postmitotic neurons to suppress early developmental programs11.
Indeed, loss of MYT1L in multiple mouse models resulted in upregu-
lation of a fetal gene expression signature12–14. To date, three pivotal
studies have investigated the in vivo functions of MYT1L by creating
transgenic mouse models. Each study disrupted a different exon of
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MYT1L (6 in Wohr et al.15, 9 in Kim et al.13, and 11 in Chen et al.12). The
animal models are valuable tools to study the molecular and cellular
consequences of MYT1L haploinsufficiency and the mice recapitulate
many of the clinical presentations such as hyperactivity, structural
malformations, obesity, and behavioral deficits12–14. However, it
remains largely unknownhowMYT1L haploinsufficiency influences the
trajectory of neuronal differentiation in vivo, and whether the devel-
opment of specific neuronal subtypes is particularly susceptible to the
loss of MYT1L. Moreover, it is unclear if there is a critical moment in
each cell’s developmental window during which MYT1L function is
indispensable. Understanding this timeline could delineate when the
transcriptional dynamics and developmental processes are amenable
to interventions.

Detailed atlases mapping the gene expression profiles of thou-
sands of cell types across the entire mouse brain have significantly
advanced our understanding of brain organization under typical
conditions16–21. Building upon this foundational knowledge, we can
now explore how genetic perturbations affect neurodevelopment, for
example by investigating the impact of disrupting a gene regulatory
network through the loss of a single TF on this atlas. Given the wide-
spread expression pattern of MYT1L in neurons, it is unclear if specific
neuronal subtypes are more sensitive to MYT1L deficiency. Likewise,
previous studies using bulk RNA sequencing have shown that MYT1L
deficiency affects genes associated with the cell cycle11,12,14,
differentiation9,10, and proliferation22. However, a limitation of bulk
sequencing is that it only provides average gene expression data from
a mixed population of cells, making it challenging to discern the pre-
cise origin of observed differences. For example, MYT1L haploinsuffi-
ciency results in an increased expression of developmental gene
expression programs in vitro and in the post-natal brain10,12,14, but it
remains unclear whether the observed differences are due to an
increased proportion of immature progenitors or whether post-
mitotic neurons are generated in proper numbers, but fail to mature
completely and become trapped in an intermediate state. Previous
studies have shown that MYT1L can function as both a transcriptional
repressor10,23 and activator12,24. This raises an important question: does
MYT1L’s role as a repressor or activator vary depending on cell type or
developmental stage? Additionally, how sensitive are the activated or
repressed gene targets to disruption? Although loss of MYT1L leads to
precocious differentiation during development12 and sustained acti-
vation of developmental programs in the adult brain10,11, the implica-
tions for neuronal development trajectory and cell-type specific fate
specification remain unknown. Utilizing single cell transcriptomics, we
can obtain a high-resolution mapping of dynamic developmental
processes, potentially elucidating howMYT1L’s function differs across
various cell types and developmental stages. This approach may also
explain the seemingly dual nature of MYT1L as both a repressor and
activator and provide insights into how the loss of MYT1L contributes
to the observed differential gene expression patterns.

In this study,we profiled a total of 412,132 nuclei to investigate the
molecular and cellular consequences of MYT1L haploinsufficiency at
the peak of neurogenesis (E14), when neurons in the six cortical layers
have been born (P1), and when neurogenesis is complete, and the
neurons are maturing (P21). Our findings indicate that MYT1L defi-
ciency primarily impacts excitatory neurons.We further identified that
genes regulated byMYT1L, whether activated or repressed, exhibit cell
type-specific responses to MYT1L haploinsufficiency. A significant
number of dysregulated genes were TFs or epigenetic regulators
temporally expressed during specific time windows, highlighting
lineage specific gene regulatory networks. In summary, our findings
provide insights into how MYT1L haploinsufficiency disrupts
embryonic and postnatal neurodevelopment. We have identified key
transcriptional networks and defined the vulnerable cell types and
developmental stages that potentially contribute to the pathogenesis
of MYT1L syndrome.

Results
Loss of MYT1L disrupts proportions of excitatory and inhibitory
neurons
To characterize the role of MYT1L during peak neurogenesis and to
understand the acute consequences of MYT1L haploinsufficiency and
loss on cell fate specification and maturation, we applied a massively
parallel barcoding approach25,26 to profile and analyze transcription
from 216,830 nuclei from the developing forebrain of embryonic day
14 (E14)MYT1L knockout (KO), heterozygous (Het), andwild type (WT)
animals (Fig. 1A, B). We find that cell types are well represented across
all genotypes (median genotype LISI score27 = 2.7) (Fig. 1C–F). We
identified 26 clusters representing 7 broad neural cell types, which
were further classified into three subtypes of radial glial cells (Hes1 and
Nestin positive), 3 subtypes of intermediate progenitor cells (Neurog2
and Eomes positive) fated to be excitatory neurons, 3 subtypes of
inhibitory intermediate progenitor cells (Dlx1 and Nkx2.1 positive),
8 subtypes of excitatory neurons (Neurod6 and Tbr1 positive), 9 sub-
types of inhibitory neurons (Gad1 and Gad2 positive), Cajal-Retzius
cells, oligodendrocyte progenitor cells, and microglia (Fig. 1C–G). We
assigned cell cycle scores based on cell cycle phase marker gene
expression and confirmed that the progenitors were mostly in G2M or
S, while the post-mitotic neurons were in G1/G0 (Fig. 1H) and expres-
sed MYT1L (Fig. 1I). The progenitor cells segregated into two distinct
populations, which gave rise to divergent excitatory and inhibitory
neuron developmental trajectories. This profile of cellular diversity
indicated that we captured a developmental window encompassing
differentiation and maturation processes, enabling us to investigate
the molecular and cellular consequences of loss of MYT1L in the
developing E14 cortex.

Because MYT1L is highly expressed in virtually all neurons during
neurogenesis (Fig. 1I),weaimed to assess the short-termconsequences
of its deficiency on overall cell type proportions. We observed subtle
but statistically significant disruptions in the abundance of post-
mitotic immature excitatory neurons (Im ExN_3), deep layer excitatory
neurons (Im L5-6 ExN_1, Im L5-6 ExN_2, L5-6 ExN_1, L5-6 ExN_2, and Im
L6 ExN), immature inhibitory neurons (Im InhN_3), and specific sub-
types of inhibitory neurons (somatosensory cortex (SI), Darpp32+ D1-
D2, and CEA-BST) (Fig. 1J). The proportions of radial glia (RG) and
inhibitory intermediate progenitors (InhIP) were mostly unaffected by
the loss of MYT1L. However, Het and KO progenitors from the RG_2
and InhIP_1 clusters showed higher proportions in G0/G1 compared to
WT,with a trend towardsdecreasedproportions in the Sphase (Fig. 1J).
This supports the hypothesis that the loss of MYT1L reduces cell pro-
liferation, disrupting proper cortical development and potentially
leading to microcephaly12. Non-cycling immature excitatory neurons
(Im ExN_3) presumably in the subventricular zone (SVZ) were themost
developmentally immature post-mitotic neurons in the excitatory
trajectory that showed an increase in abundance in KOs compared to
WT. This could be a result of developing neurons prematurely differ-
entiating and making the cell fate decision early at the expense of
proliferating progenitors as has been hypothesized previously12,28.

Loss of MYT1L disrupts excitatory neuron development
We conducted a differential expression analysis to analyze the mole-
cular signatures of each cell type and determine which subtypes
exhibited the most significant transcriptional changes due to MYT1L
deficiency. The massively parallel barcoding approach enables multi-
ple biological replicates in a single workflow, helping ensure accurate
results and minimize false discoveries. We utilized a pseudobulk ana-
lysis, aggregating individual nuclei into cell type groups. This method,
recognized for its speed and accuracy compared to specialized single-
cell DE methods29,30, enabled us to perform pairwise analyses between
WT and KO genotypes using DESeq231. Our analysis identified 900
unique differentially expressed genes (DEGs; BH adjusted P-value <
0.05; |log2 fold change| > 0.2) between WT and KO, with 600
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consistently upregulated and 285 consistently downregulated in KO
clusters compared to WT (Fig. 2A, Supplementary Data 1). Notably,
deep layer excitatory neurons harbored the majority of DEGs, even
after downsampling, indicating their particular sensitivity to MYT1L
loss. To ensure that this was not due to differences in sensitivity due to
different rates of gene capture, we confirmed the number of DEGswas
not correlated with the number of detected genes (R2 = 0.07).

Progenitor cells, which do not express MYT1L, showed no DEGs, sug-
gesting that the effects of MYT1L deficiency are intrinsic to MYT1L-
expressing cells.

Given that MYT1L homozygotes do not survive postnatally, and
the human disorder is caused by haploinsufficiency, we also analyzed
Hets. Pairwise pseudobulk analysis betweenWT and Het revealed only
5 DEGs across all cell types (Supplementary Data 2). The apparent lack
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expression of cell cycle genes (G2M phase in orange, S phase in yellow, and G1/G0
in blue). I UMAP feature plot showing expression of MYT1L in postmitotic excita-
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of DEGs may be due to the subtle magnitude of effect based on pre-
vious bulk RNAseq studies12. Another possible factor is that E14 is a
dynamic differentiation period, where cells are likely in different cell
states along the developmental trajectory and not synchronized,
resulting in high variability of gene expression within clusters. Thus,
rather than a pairwise comparison, we modeled the number of func-
tional alleles as an ordinal factor and applied the Likelihood Ratio Test
to evaluate changes as a function of MYT1L gene dose. This can pro-
vide insight into whether this pattern of regulation was the same for
activated and repressed genes, which may suggest which function is
most critical to the disorder.We classified 414 genesmost upregulated
inKOs asMYT1L-repressed genes,while 232 genesmostupregulated in
WTs were considered MYT1L-activated genes (Supplementary Fig. 1
and Supplementary Data 3). MYT1L-repressed genes showed greater
gene dose sensitivity than MYT1L-activated genes (Fig. 2B), becom-
ing upregulated even with the loss of a single MYT1L allele.

To evaluate if a particular cell type was driving the immature
transcriptional signature previously observed in E14MYT1LHetmouse
cortex12, we performed gene ontology (GO) enrichment analysis for
the DEGs in each cluster. MYT1L-repressed genes were enriched in

development, neuron migration, and cell fate commitment pathways,
particularly in immature and deep layer excitatory neuronal clusters
(Fig. 2C). Conversely, MYT1L-activated genes were involved in synapse
organization, axonogenesis, and neurotransmitter secretion and
transport (Fig. 2D). Together, this revealed that loss ofMYT1L results in
an immature developmental transcriptional state, reinforcing that the
suppression of developmental genes is critical to ensure proper neu-
ronal maturation.

We next integrated our pseudobulk DEGs with an age and
region-matched E14 forebrain MYT1L CUT&RUN dataset that cata-
loged 560 high-confidence MYT1L binding sites within promoter
sequences11 for 480 genes to identify if the MYT1L-activated and
-repressed genes are direct or indirect targets of MYT1L. Of 55 dif-
ferentially expressed MYT1L targets, 42 were upregulated and 13
were downregulated in KOs compared to WT, reinforcing MYT1L’s
primary role as a transcriptional repressor. Additionally, differen-
tially expressed MYT1L targets were significantly enriched for tran-
scription factors (TFs) (81/480; P = 2.2 × 10−16, Fisher’s exact test)
(Fig. 2E), demonstrating that the DEGs were largely driven by indirect
effects of MYT1L deficiency.
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MYT1L-activated (D) DEGs. Overrepresentation of genes within GO terms was
determined using a one-sided hypergeometric test, with p values adjusted for
multiple testing using the Benjamini-Hochberg method. E Plot showing the fre-
quency distribution of annotated protein classes among the DEGs. F Heatmap
displaying identified regulons (columns) for eachWT cluster (rows), colored by the
Regulon Specificity Score (RSS). RSS measures the specificity of each regulon’s
activity for each cluster. Cluster classes are annotated on the right, and differen-
tially expressed regulons are annotated in each column. G Representative plots
showing the ranked Regulon Specificity Score plots for Im L5-6 ExN_1, L5-6 ExN_1,
and Sst InhN clusters. Differentially expressed regulons are highlighted in red and
labeled on the plot.
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To gain insight into upstream regulators, we used SCENIC32 to
build a co-expression network and identify regulons, which are mod-
ules of putative TF regulators and their inferred target genes. We
identified 984 regulons in WT cells, of which 171 regulons were enri-
ched with some cell type-specific activity based on the regulon speci-
ficity score (RSS) (Fig. 2F). While MYT1L loss did not significantly
disrupt the inferred co-expression network structure, 27 out of 171
(16%) regulons were differentially expressed, primarily in excitatory
neurons (Fig. 2G). This provides evidence that MYT1L can be a tran-
scriptional regulator that not only influences its direct targets but also
downstream indirect targets within a gene network.

Finally, to examine the convergence of our observed transcrip-
tional disruptions with neurodevelopmental disorder-associated
genes, we intersected the excitatory and inhibitory neuron DEGs
(Fig. 2A) with 932 high-confidence autism-related genes from the
SFARI database with a score of 1 or 233–35. We found a significant
overlap of 140 out of 900 DEGs (15.6%) with SFARI genes
(P = 2.1 × 10−12, chi-square test with Yates’ continuity correction),
comprising 123 genes from the excitatory neuron clusters and 16
genes from inhibitory neuron clusters. To account for potential
neuronal expression bias of autism genes36, we randomly sampled
900 genes from the top 50% expressed genes in these clusters 1000
times. Themedian overlap with SFARI geneswas 26, compared to our
observed 123, indicating a 4.7-fold enrichment for SFARI genes
among MTY1L DEGs. Notably, many autism-associated DEGs, such as
Zbtb20 and Phf21a, exhibited pronounced dysregulation in deep
layer excitatory neurons (Supplementary Fig. 2). This finding sug-
gests that pathways perturbed byMYT1L deficiency share similarities
with those disrupted by a subset of autism genes involved in axon
guidance, neuronal migration, and chemical synaptic transmission6.
Overall, these observed transcriptomic changes reveal molecular
changes affecting the maturation and function of deep layer excita-
tory neurons and convergence with key autism-related genes and
pathways.

MYT1L’s critical role in neuronal maturation timing
Our differential analysis shows that MYT1L deficiency is associated
with an immature transcriptional signature in excitatory neurons. We
hypothesize that MYT1L-deficient progenitors undergo premature
differentiation, making early neuronal cell fate decisions but subse-
quently exhibiting delayed or stalled maturation. This results in a
disrupted transcriptional maturation signature. We propose a critical
moment during differentiation when MYT1L function is essential for
guiding the neuronal developmental trajectory. This model reconciles
both the precocious differentiation and the immature transcriptional
signatures observed in MYT1L-deficient neurons. To test these
hypotheses, we assessed maturation trajectory differences between
genotypes during the critical developmental window of neurogenesis.
Using Monocle337, we reconstructed a pseudotemporal trajectory
independent of prior cluster definitions (Fig. 3A). This approach
models the cell states as a continuum of dynamic changes, enabling
quantification of gene expression changes during differentiation. We
observed subtle yet widespread disruptions in the distribution of Het
and KO nuclei compared to WT across pseudotime states (Fig. 3B–D),
suggesting a disrupted transcriptional maturation signature that may
be overlooked when examining cell proportions based on cluster
markers alone.

To identify drivers of excitatory neuron development, we ana-
lyzed TF expression along pseudotime in WT cells, establishing a
putative timeline of gene activation and expression from progenitors
to differentiated excitatory neurons (Fig. 3E). We then tested whether
MYT1L loss causes variations in the timing of TF expression, potentially
impacting the developmental trajectory of excitatory neurons. Using
the Kullback-Leibler divergence test, we identified 27 TFs with dis-
rupted expression timing as a result of MYT1L deficiency (Fig. 3F, G).

These TFs, generally de-repressed in Hets and KOs, are involved in
developmental regulation (Dlx5, Dlx6, and Hoxd10), control of cell
cycle progression (Hbp1), neurogenesis (Nhlh2, Lmx1a, and Insm2), and
epigenetic regulation (Tet2 and Prdm) (Fig. 3G, H). To pinpoint where
MYT1L may have the greatest effect, we intersected all the excitatory
pseudotemporal TFs with E14 MYT1L CUT&RUN peaks11. We found an
enrichment of direct MYT1L targets during a transient period shortly
after the transition from progenitor to postmitotic neuron, suggesting
its important role during this criticalmoment (Fig. 3F). Additionally,we
identified six genes within this pseudotime bin (Efna4, Ccng2, Nbr1,
Frmd4b, Sorsb2, and Midn) as targets of ZBTB12, a molecular gate-
keeper known to safeguard the unidirectional transitionof progenitors
to differentiated states38. This analysis provides a pseudotime-resolved
sequence of MYT1L target gene expression and identifies a critical
developmental window, where alterations in gene expression patterns
during this sensitive period may lead to disruptions in neuronal dif-
ferentiation and maturation.

MYT1L loss disrupts early postnatal cortical development at P1
To investigate the effects of MYT1L deficiency on neuronal develop-
ment after all cortical neurons are born, we performed a snRNAseq
analysis on the forebrain tissue from P1 MYT1L WT (n = 4) and Het
(n = 8) animals. In our MYT1L mouse model, KO animals are not viable
postnatally so we are only able to analyze WT and Hets. We analyzed
98,797 nuclei, identifying 36 distinct cell clusters (Fig. 4A). Analysis of
cluster proportions revealed significant decreases in deep layer exci-
tatory neurons (L5-6 ExN_2 and L6 ExN), upper layer excitatory neu-
rons (Im L2-4 ExN_2 and L2-4 ExN_2), and increase in Im L2-4 ExN_1 in
Hets compared to WT. Interestingly, pseudobulk differential analysis
identified 89 unique DEGs (Fig. 4B, Supplementary Fig. 3 and Supple-
mentary Data 4), a marked decrease from the number of E14 DEGs
comparing KO to WT, but more than Het to WT comparisons at E14,
suggesting an increasing disruption with time. The majority of these
DEGs were upregulated in Hets, consistent with MYT1L’s primary role
as a transcriptional repressor.

To understand the functional implications of these transcriptional
changes, we performed GO enrichment analysis on MYT1L-activated
and -repressed genes. MYT1L-activated genes, which were down-
regulated in Het animals, were enriched for processes crucial for
neuronal function and maturation including cell-cell adhesion,
synaptic transmission, and glutamate receptor signaling (Fig. 4C). This
suggests that lossofMYT1L leads to impaired neuronalmaturation and
synaptic function. Conversely, MYT1L-repressed genes, which were
upregulated in Het animals, were associated with developmental
processes, including neuron projection guidance (Fig. 4D). This indi-
cates that MYT1L deficiency results in the persistence of develop-
mental programs.

Next, we performed a pseudotime analysis on the continuous
excitatory neuron clusters to test for shifts in the distribution of cells
per genotype within each pseudotime bin (Fig. 4E). At P1, we detected
altered distributions primarily within the upper layer neuron clusters,
with Het cells trending towards lower pseudotime values. Similarly to
E14, these findings suggest an immature neuronal state compared to
WT cells (Fig. 4F). These results further suggest that WT cells mature
along the developmental trajectory, while Hets cells lag behind
(Fig. 4G), reinforcing the role of MYT1L in proper neuronal
development.

Overall, MYT1L likely plays a crucial role in regulating the pro-
portions of maturation of specific neuronal subtypes during early
postnatal development, consistent with previous studies39. The
observed changes in cell type proportions and gene expression pat-
terns suggest that MYT1L deficiency leads to persistent immature
transcriptional states and altered neuronal composition, which may
contribute to the neurodevelopmental phenotypes associated with
MYT1L syndrome.
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Sensitivity of excitatory neurons persist throughout
neurodevelopment
Finally, to investigate the long-term effects of MYT1L deficiency on
both cell proportion and transcriptional changes, we performed
snRNAseq analysis of cortical tissue from juvenile WT (n= 6) and
MYT1L Het (n = 6) animals at P21, when neurogenesis is largely com-
plete, but critical periods in cortical circuit maturation are ongoing.
Analysis of KOs was again not possible due to postnatal lethality12–14.
We analyzed 96,505 nuclei, identifying 19 types of excitatory neurons
spanning cortical layers, 11 subtypes of inhibitory neurons, and 8 non-
neuronal types using hierarchical correlationmapping and referencing
the taxonomies and subclass annotations from the Allen Brain Cell
(ABC) Atlas19 (Fig. 5A and Supplementary Fig. 4). Analysis of excitatory
neuron proportions, revealed significantly fewer upper layer L2/3 IT
ENT and L4/5 IT neurons in MYT1L Het cortices compared to WT, with
increased numbers of deep layer L6 CT, L6 IT, and L6b CT neurons
(Fig. 5B). This is consistent with increased deep layer neuron density in
the cortices of P60 Het mice11. We detected 412 unique cluster

pseudobulk DEGs, primarily in excitatory neurons (Fig. 5B, Supple-
mentary Fig. 5, and Supplementary Data 5). Consistent with E14 and P1
findings, MYT1L Het neurons showed an increased number of upre-
gulated DEGs, indicating de-repression. We observed a progressive
increase in DEGs from E14 (5 DEGs) to P1 (89DEGs) to P21 (412 DEGs) in
Hets compared to WT. L6 neurons were the most affected, with
modest effects on L2/3 intrathalamic (IT) and L4/5 IT neurons. GO
analysis revealed thatWT-upregulatedDEGswereassociatedwith axon
guidance (Epha3, Epha5, Epha6, Epha7, Slit2, and Robo2), synapse
organization (Cdh6, Cdh9, Sema3a, Cntn5, and Lrrc4c), and neuro-
transmission (Gria4, Glra2, Rim1, and Grm3) (Fig. 5C), while Het-
upregulated genes were enriched in nervous system development
pathways (Pak1, Numbl, Etv5, Smurf1, Bcl2, Nfix, and Ptn) (Fig. 5D). This
analysis suggests that MYT1L Het excitatory neurons remain tran-
scriptionally immature compared to WT, demonstrating that neuro-
developmental deficiencies in Hets commence during embryonic
development and persist and expand into early postnatal
development.
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Intriguingly, we also observed a consistent increase in the pro-
portion of DARPP32-positive striatal inhibitory neurons in MYT1L Het
cortex at E14 (Fig. 1J), P1 (Fig. 4B), and P21 (Supplementary Fig. 5). This
observation is unlikely to be an artifact of striatal tissue contamination
during cortical dissections, given the consistent proportion difference
between Het and WT samples across biological replicates at three time
points. We hypothesized that MYT1L deficiencymight result in themis-
localization of these cells during development, causing them tomigrate
to the cortex instead of their typical striatal destination. To validate this

finding and gain spatial information not captured by snRNAseq, we
performed immunofluorescence staining to directly visualize and
quantify the distribution of DARPP32 and NeuN double-positive neu-
rons in situ from three different regions spanning the cortex (Fig. 5E, F).
We confirmed the increase in DARPP32 and NeuN double-positive
neurons in the deep layer of the cortex (Fig. 5G), validating the
snRNAseq results and offering insight into the potential migration
defects associated with MYT1L deficiency. Further investigation is nee-
ded to elucidate the mechanisms underlying this phenomenon.

A B

UMAP1

U
M

AP
2

50k

WT

0
Het

36 clusters
98,797 nuclei

GO:BP MYT1L-activated genes (P1) GO:BP MYT1L-repressed genes (P1) 

protein localization to synapse

Golgi to plasma membrane transport

negative regulation of stress fiber assembly

glutamate receptor signaling pathway

cell−cell junction assembly

synaptic transmission, glutamatergic

cell−cell adhesion via plasma membrane

D
1 

In
hN

D
2 

In
hN

L2
−4

 E
xN

_3

L5
 E

xN

Ss
t I

nh
N

GeneRatio

0.25

0.50

0.75

1.00

1E-3

p.adjust
0.05

C D

presynaptic modulation of chemical synaptic transmission
retrograde trans−synaptic signaling

synaptic transmission, glutamatergic
negative regulation of trans-synaptic signaling

positive regulation of interferon-beta production
positive regulation of glycolytic process

positive regulation of nervous system development
positive regulation of axonogenesis

negative regulation of dendrite development
axonogenesis

neuron projection guidance
axon guidance

regulation of response to oxidative stress
negative regulation of endocytosis

D
1 

In
hN

Im
 L

2−
4 

Ex
N

L5
 E

xN

L6
 E

xN

Ss
t I

nh
N

GeneRatio

0.25
0.50
0.75

1.00

1E-3

p.adjust
0.05

Im L5−6 ExN_1

Claustrum

Im L5−6 ExN_2

L2−4 ExN_3

Im ExN_1

L2−4 ExN_2

L2−4 ExN_1

Im L2−4 ExN

Im ExN_2

0 10 20 30
Pseudotime

*
*
*
*
*

300

Pseudotime

E F
G

UMAP1

U
M

AP
2

Excitatory neuron trajectory

Excitatory neurons

0

5

-10

%
C

ha
ng

e 
fro

m
 W

T

Pseudotime
5 10 15 20

Im ExN_1 
Het

0

10

%
C

ha
ng

e 
fro

m
 W

T

0 5 10 15

Im L2-4 ExN

-10
Het

All nuclei
HetWT

Normalized to WT
HetNuclei Genes

89 unique DEGs

3,346D2 InhN 16,630
5,983D1 InhN 20,243
489Str InhN 10,288

2,094Vip InhN 14,705
209Lhx8 InhN 7,349
243Sst InhN 7,970

5,793Sst/Pvalb InhN 19,725
2,701Im InhN_2 15,967
3,295Im InhN_1 18,755

1,466L6b ExN 15,532
7,120L6 ExN 20,689
595L5−6 ExN 11,765

6,004Im L5−6 ExN_2 21,087
3,015Im L5−6 ExN_1 17,722
2,722L5 ExN 18,390
6,481L2−4 ExN_3 21,324
6,162L2−4 ExN_2 20,054
1,208L2−4 ExN_1 13,846
7,565Im L2−4 ExN 19,677
2,733Im ExN_2 15,218
7,827Im ExN_1 21,743

0
Gene count

-10 20

*
*

*

*

*

*

*

*

**

*

*

Ex
ci

ta
to

ry
ne

ur
on

s
In

hi
bi

to
ry

ne
ur

on
s

0 0.04
Proportion

0.08 0.12 0
Proportion

+400%

WT Het

n=8
n=4

Het
WT

p<0.05

*

Het
WT p<0.05*

Fig. 4 | Loss ofMYT1Ldisruptsproportions of excitatoryneurons atP1. AUMAP
projection showing 98,797 nuclei in 36 clusters from the forebrain of P1MYT1LWT
(n= 8) and Het (n = 4) animals. B From left to right: summary plot showing the
numbers of nuclei and genes detected in each cluster; bar plot displaying the
mean ± SEM relative proportions of nuclei in each annotated cell cluster for MYT1L
WT and Het genotypes; mean ± SEM proportions of Het normalized to WT; and
number of differentially expressed genes (DEGs) per cell type that are upregulated
inWT (light blue; n = 8 biological replicates) and upregulated in Het (medium blue,
n = 4 biological replicates) (*FDR adjusted p <0.05, moderated t-test). Dot plots
showing enrichedGObiological processes terms in (C)MYT1L-activated (decreased
expression in Het) and (D) MYT1L-repressed (increased expression in Het) DEGs.
Overrepresentation of genes within GO terms was determined using a one-sided

hypergeometric test, with p values adjusted for multiple testing using the
Benjamini-Hochberg method. E UMAP visualization of excitatory neuron clusters
colored by pseudotime. The arrow indicates the inferred developmental trajectory
from early (blue) to late (yellow) pseudotime. F Distribution of excitatory neuron
subtypes along the pseudotime axis for WT (light blue; n = 8 biological replicates)
and Het (blue; n = 4 biological replicates). Box plots show median (center line),
interquartile range (box), and whiskers extending to 1.5 times the interquartile
range. Asterisks indicate statistically significant differences between WT and Het
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Disruptions in excitatory neurons are detectable across all
timepoints
To deepen our understanding of the developmental progression from
E14 progenitors to the end of neurogenesis at P1 to terminally differ-
entiated cell types at P21, we integrated the three datasets together,
analyzing a total of 412,132 nuclei. Integrated UMAP visualization

revealed distinct clusters corresponding to major cell classes, includ-
ing progenitors, excitatory and inhibitory neurons, glia, andother non-
neuronal cell types. The 54 identified clusters showed clear develop-
mental progression from E14 to P21, reflecting the maturation of var-
ious cell types over time (Fig. 6A). Analysis of cell class proportions
across developmental stages confirmed the expected decrease in
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Fig. 5 | Sensitivity of excitatoryneuronspersist throughoutneurodevelopment
to P21. AUMAP projection showing 96,505 nuclei in 39 clusters from the cortex of
P21 MYT1L WT (n = 6) and Het (n = 6) animals. B From left to right: summary plot
showing the numbers of nuclei and genes detected in each cluster; bar plot dis-
playing themean± SEM relative proportions of nuclei in each annotated cluster for
MYT1L WT and Het genotypes; mean± SEM proportions of Het normalized to WT;
and number of differentially expressed genes (DEGs) per cell type upregulated in
WT (light blue; n = 6 biological replicates) and upregulated in Het (blue; n = 6 bio-
logical replicates). Dot plots showing enrichedGObiological processes terms in (C)
MYT1L-activated (decreased expression in Het) and (D) MYT1L-repressed
(increased expression in Het) DEGs. Overrepresentation of genes within GO terms
was determined using a one-sided hypergeometric test, with p values adjusted for
multiple testing using the Benjamini-Hochberg method. E, F Representative

immunofluorescence images of brain sections fromWTandMYT1LHetmice froma
medial region (R2) and posterior (R3) region of the cortex. Upper panels show
whole-brain sections stained for DARPP32 (green), NeuN (magenta), and DAPI
(blue). Lower panels show higher magnification of the boxed areas in the upper
panels, showing DARPP32 and NeuN staining separately. G Box plots showing
quantification of DARPP32 and NeuN double-positive cell counts in three cortical
regions (R1, R2, and R3) ofWT andMYT1L Het mice. Each dot represents a counted
section and is color-coded by animal. Box plots show median (center line), inter-
quartile range (box), and whiskers extending to 1.5 times the interquartile range.
Statistical significance was assessed using a linear mixedmodel comparison to test
the effect of genotype while accounting for section differences and individual
mouse variability. Significance is indicated by asterisks (***FDR adjusted
p <0.001, ANOVA).

Article https://doi.org/10.1038/s41467-024-54371-2

Nature Communications |        (2024) 15:10308 8

www.nature.com/naturecommunications


proportion of progenitor cells while excitatory and inhibitory neuron
populations increased fromE14 to P21, consistentwith the progression
of neurogenesis and maturation. (Fig. 6B). Focusing on the excitatory
neurons, we observed a shift from immature tomature neurons across
development in both genotypes. However,MYT1LHet animals showed
subtle but consistent alterations in the proportions of deep layer (DL)
and upper layer (UL) excitatory neurons (Fig. 6C).

To assess the transcriptional impact of MYT1L deficiency across
development, we performed pseudobulk differential expression ana-
lysis on 80,866 deep layer excitatory neurons (DL ExN).We identified a
total of 20,521 DEGs, with the vast majority associated with develop-
mental stage (age) (Fig. 6D). Importantly, we found 63 DEGs showing
an interaction between age and genotype. Further examination of the
age:genotype interaction DEGs revealed distinct expression patterns
across development for WT and Het animals (Fig. 6E). Some of these
genes showed increased expression at P21 similar to E14 levels, such as
NCOR2, SKI, and SMURF1, which are negative regulators of TGF-beta
signaling40,41. This would likely result in significant suppression of TGF-
beta signaling, potentially leading to disruptions in differentiation,
maturation, and migration. Further investigation is needed to deter-
mine the extent and cellular context of the overexpression, as well as
potential compensatory mechanisms activated in response to these
changes.

The integrated analysis acrossmultiple developmental timepoints
reveals persistent and dynamic effects on cortical development. The
alterations in cell type proportions, particularly in excitatory neuron
subtypes, coupled with the mis-localization of DARPP32-positive
neurons, highlight the critical role of MYT1L in proper neuronal
migration and positioning. The transcriptional changes observed,
especially those showing age-genotype interactions, underscore the
complex and long-lasting impact of MYT1L deficiency on gene
expression programs. The potential disruption of TGF-beta signaling
suggests consequences for neuronal maturation. These findings not
only elucidate the molecular and cellular mechanisms underlying
MYT1L syndrome but also provide insights into the broader processes
governing cortical development and the establishment of neuronal
identity.

Discussion
In this study, we analyzed the transcriptomes of 412,132 nuclei across
neurodevelopment in a model of MYT1L mutation, delineating the
molecular and cellular consequences of loss of MYT1L. The massively
parallel barcoding technology enabled cost-effective integration of
multiple biological replicates per genotype at each time point, mini-
mizing false discoveries and artifacts associated with snRNAseq data
sparsity. By leveraging single-cell atlases of the mouse brain as
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references, we have advanced our understanding of how the disrup-
tion of a single transcription factor can perturb neurodevelopment
and maturation processes.

Analysis of the developmental trajectory at E14, P1, and P21 led us
to propose a unifying theory: MYT1L deficiency causes progenitors to
first precociously differentiate, then mature slowly into functional
neurons, with deep layer excitatory neurons being particularly sus-
ceptible. At E14, this slowed maturation results in fewer deep layer
neurons compared to WT. MYT1L deficiency may lead to a premature
fate switch in some progenitors due to altered expression of temporal
identity genes that regulate the transition from generating deep to
upper layer neurons. This may explain the continued decrease in deep
layer neurons and increased proportion of upper layer neurons at P1.
Intriguingly, at P21, we observe greater proportions of deep layer
neurons in the MYT1L Hets, consistent with histology analysis11, pos-
sibly due to a selective survival advantage during the postnatal waveof
apoptosis. Further investigation into cell death patterns across cortical
layers during development is needed.

Our results demonstrate that MYT1L deficiency causes a delay in
neuronal maturation at E14 and P1, with dysregulation of maturation-
related regulatory programs persisting through P21. The progressive
increase of DEGs in Hets across these timepoints suggests that the
consequences of MYT1L deficiency are sustained beyond the peak of
MYT1L expression. This temporal progression can suggest two key
implications: first, an amplification of indirect effects, where MYT1L’s
role as a transcriptional regulator could initiate a gradually expanding
network of indirect effects on gene expression as development pro-
ceeds; and second, there may be a prolonged potential window for
postnatal therapeutic interventions, given the continued increase in
the effects of MYT1L deficiency after birth. Our findings reveal that
MYT1L functions predominantly as a transcriptional repressor, mod-
ulating gene expression programs linked to key developmental pro-
cesses such as axon guidance, neuron migration, and cell fate
commitment. MYT1L-repressed pathways exhibited gene dose-
responsiveness, while MYT1L-activated genes, primarily involved in
synaptic function and neurotransmission, showed greater tolerance to
haploinsufficiency. The dysregulated genes were enriched for TFs and
epigenetic regulators, potentially triggering a cascade of downstream
effects stemming from MYT1L perturbation. Using a brain region and
age-matchedMYT1L CUT&RUNdataset, we observed thatmost effects
at E14 were indirect, with the percentage of direct effects increasing at
P21. However, since MYT1L recruits the SIN3B deacetylation complex,
many “indirect” regulatory targets identified by CUT&RUN may actu-
ally represent direct responses to earlier, unmeasured binding events,
as deacetylated histones can maintain repressive epigenetic
“memories”42. A deeper analysis of histone states could help disen-
tangle this phenomenon. Nonetheless, these findings highlight the cell
type-specific and developmental stage-specific nature of MYT1L’s
function, demonstrating its critical role in orchestrating neuronal
maturation and gene expression during brain development.

To date, three transgenic mouse models disrupting different
exons of MYT1L converge on a hyperactivity phenotype, while other
behavioral outcomes vary, likely due to differences in assessment
methods12,13,15, or differences in the molecular consequence of each
mutation. Weigel et al.14 performed scRNAseq on the neonatal (P0)
forebrain tissue from the mouse model described in Wohr et al.15

Unlike our model, where MYT1L homozygous KOs are not viable
postnatally and die at birth, their KO animals survive the first few days
of postnatal development, allowing for P0 analysis. They observed a
decreased number of newly formed neurons in the subventricular
zone and increased expression of non-neuronal gene expression pro-
grams in KOs, potentially disturbing neuronal identity. Consistent with
their findings, we noted a slight upregulation of mouse embryonic
fibroblast (MEF) signature genes at P21 in Hets, albeit with a minor
effect size. Both studies identified L5/6 neurons as having the greatest

number of DEGs. Interestingly, Weigel et al. also observed a moderate
increase in the proportion of striatal inhibitory neurons inMYT1LHets,
aligning with our findings. A table summarizing results from this, and
previous studies can be found in Supplementary Table 1. Additional
experiments are needed to fully interpret these observations and their
implications for cortical development in the context of MYT1L
deficiency.

While MYT1L is a neuron-specific TF, it had been uncertain whe-
ther its loss may exert non-cell autonomous effects on surrounding
glia during postnatal development. Our analysis revealed a relatively
higher proportion of oligodendrocytes and microglia in P1 and P21
MYT1L Hets compared toWT, but we did not detect any DEGs in these
cell types. However, with relatively low numbers of cells and gene
counts in these clusters, theremay be differences below our threshold
to detect. These findings suggest the possibility of MYT1L-mediated
effects on oligodendrocyte and microglia numbers, yet further inves-
tigations with increased cell numbers are needed to elucidate the
nature and extent of these effects. What was abundantly clear in our
data at both time points was the profound, cell type-specific tran-
scriptional responses to MYT1L deficiency, especially in deep layer
excitatory neurons.

A striking observation from our analysis of pseudobulk DEGs
reveals that around 15% of these DEGs overlap with SFARI gene can-
didates and display significant dysregulation in deep layer excitatory
neurons, particularly the L5-6 ExN_1, L5-6 ExN_2, and ImL6ExNclusters
(Supplementary Fig. 2). Interestingly, expression levels of these genes
were elevated inKOs compared toWTs, hinting at the possible loss of a
repressive mechanism. Despite the majority of these genes not being
identified as direct targets in the E14 MYT1L CUT&RUN analysis, it is
important to note that the CUT&RUN dataset only includes gene tar-
gets based on MYT1L occupancy in promoter regions, omitting
potential targets influencedbydistal regulatory elements, as it remains
challenging to systematically link long-distance enhancers to specific
gene targets. Nevertheless, the observed differential expression allows
us to hypothesize that MYT1L may function as a transcriptional reg-
ulator, influencing SFARI gene expression directly or indirectly, or
through mechanisms like epigenetic memory. Ultimately, the dis-
rupted pathways we’ve identified represent a core set of pathways that
are critical for proper neurodevelopment.

While our study provides valuable insights into the role of MYT1L
in neurodevelopment, it is important to acknowledge its limitations.
Massively parallel barcoding has significantly enhanced snRNAseq
throughput, but even greater numbers of nuclei are needed to fully
capture the complexity of cortical development. Our analysis of over
400,000 nuclei demonstrates specificity in the differences we have
identified, but it may lack sensitivity due to limitations inherent to
single-cell/nucleus technology. There may be additional cell types or
subtle changes in cell type proportions that could only be detected by
analyzing an even larger number of nuclei. This limitation in sensitivity
is analogous to the challenge single-cell methods face in detecting
differentially expressed genes. This is particularly crucial when exam-
ining the consequences of MYT1L, where the effect size of hap-
loinsufficiency is subtle and varies across cell types and developmental
stages. Our P1 dataset exemplifies this challenge, with relatively less
statistical power due to an imbalanced sample size. Additionally, the
comparison of WT to Het animals further reduce the effect size. In
contrast, our E14 dataset, comparing WT to KO, contained nearly 2.2
times the number of nuclei with a greater effect size and consequently
yielded more differentially expressed genes. The P21 dataset, while
also comparingWT to Het, does not have the variation associated with
developmental trajectories, and thus we were powered to detect
smaller changes. This underscores the need for greater depth in single-
cell studies of neurodevelopmental disorders to detect nuanced
effects. Increased resolution could potentially reveal additional cell
type-specific responses to MYT1L deficiency and provide a more
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comprehensive understanding of its impact across all cortical layers
and cell types. Future studies with even greater cellular depth and
more biological replicates could further refine our findings and
potentially uncover additional nuances in the developmental trajec-
tories affected by MYT1L mutation.

In conclusion, our comprehensive analyses across developmental
stages underscore the pivotal role of MYT1L in neuronal maturation
and development. These findings reveal that the developmental tra-
jectory and transcriptional landscape of excitatory neurons are
markedly altered by MYT1L deficiency, with effects persisting from
early neurogenesis through adolescence. This study not only advances
our understanding of the genetic and molecular foundations of neu-
ronal development but also demonstrates how we can deeply char-
acterize genetic perturbations at scale to investigate the enduring
impact of NDD associated mutations on the maturation and function
of the brain.

Methods
All animal studies were approved by and performed in accordance
with the guidelines of the Animal Care and Use Committee of
Washington University in Saint Louis, School ofMedicine (Protocol 23-
0138) and conformed to NIH guidelines for the care and use of
laboratory animals.

Animals and tissue collection
Animals were housed in controlled environments with a 12:12-h light-
dark cycle, constant temperature (20–22 °C) and relative humidity
(50%), and ad libitum access to standard laboratory diet andwater. The
C57BL/6-Myt1lem1Jdd/J (Myt1l S710fsX12; Jackson Laboratories 036428)
line was maintained with breeding pairs consisting of a Myt1l Het and
an in-house C57BL/6 J mouse. In-depth molecular and behavioral
characterization of the mice is previously published12. The transgenic
line was refreshed every 8–10 generations by backcrossing to freshly
obtained C57BL/6 J males and females from Jackson Laboratories.
Upon weaning at P21, the animals were group-housed by sex and
genotype. To obtain homozygous embryos, timed pregnant Myt1l Het
x Het breeding pairs were set up, with the first morning after finding a
vaginal plug considered E0.5.

To harvest E14-14.5 embryos, the pregnant dams were deeply
anesthetized with isoflurane followed by decapitation. Death was
confirmed by absence of pulse, breathing, and response to firm toe
pinch. The embryos were rapidly dissected in HBSS on ice and
decapitated. The brains were extracted, meninges were removed,
forebrains dissected, flash frozen in liquid nitrogen, and stored at
−80 °C. Tail tissue was collected for gDNA isolation and genotyping.
The forebrains from P1 pups and cortical tissue from P21 pups were
similarly collected and stored at −80 °C. For the E14 cohort, mixed
sexes from 3 biological replicates perWT, Het, and KOgenotypes were
used, totaling 9 samples. The P1 and P21 cohorts included onlyWT and
Het animals, as KOs are not viable postnatally. The P1 cohort consisted
of 12 animals, with 8 WT (5male, 3 female) and 4 MYT1L Het (3 male, 1
female). The P21 cohort consisted of 12 animals: 3 male WT, 3 female
WT, 3 male MYT1L Het, and 3 female MYT1L Het.

Genotyping
Tissue (tail biopsy, ear punch, or toe clipping) was obtained from each
animal and placed in a PCR tube. To confirm the genotype from pro-
cessed nuclei samples, 2μl nuclei suspensionwas added to a PCR tube.
100μl lysis buffer (25mM NaOH, 0.2mM EDTA, pH 12) was added to
each tube and incubated at 99 °C for 60min in a thermocycler. Once
the samples cooled to room temperature, 100μl 40mMTris-HCl pH 5
was added to neutralize the alkaline lysis buffer. The crude lysate
containing genomic DNA (gDNA) was stored at 4 °C. Three reactions
were performed for each animal to genotype theMYT1LWT allele (For:
5′-ATGTCGCAGTAGCCAAGTC-3′, Rev: 5′-TCTTGCTACACGTGCTACT-

3′),MYT1Lmutant allele (For: 5′-ATGTCGCAGTAGCCAAGTC-3′, Rev: 5′-
TCTTGCTACACGTACTGGA-3′), and SRY (For: 5′-TTGTCTAGA-
GAGCATGGAGGGCCATGTCAA-3′, Rev: 5′-CCACTCCTCTGTGA-
CACTTTAGCCCTCCGA-3′) to determine sex. The PCR conditions for
genotypingwith allele specific PCRprimer pairs involvedmixing 1μl of
the crude gDNA with 5μl Phusion High-Fidelity PCR Master Mix, 1μl
10μM MYT1L WT or mutant F/R primer mix, 1μl 10μM B-actin F/R
primer mix (For: 5′-AGAGGGAAATCGTGCGTGAC-3′, Rev: 5′-CAA-
TAGTGATGACCTGGCCGT-3′), and 2ul ddH2O. Thermocycling condi-
tions were as follows: 98 °C for 3min; 35 cycles of: 98 °C for 10 s, 61 °C
for 20 s, 72 °C for 20 s; 72 °C for 5min; and 4 °C hold. For SRY, 1μl
crude gDNA was added to a master mix containing 5ul OneTaq Quick-
Load 2X Master Mix, 1μl 10μM SRY F/R primer mix, 1μl 10μM B-actin
primer mix, and 2μl ddH2O. Thermocycling conditions were as fol-
lows: 94 °C for 3min; 35 cycles of: 94 °C for 10 s, 60 °C for 20 s, 68 °C
for 20 s; 68 °C for 5min; and 4 °C hold. Multiplexing B-actin not only
confirms the presence of gDNA but also minimizes non-specific
amplification of theMYT1Lmutant band inWT samples. PCR products
were run on a 1% agarose gel and visualized with GelRed.

Injection of AAV-calling cards reagents
Calling Cards is a method to longitudinally record protein-DNA inter-
actions over time in tissues43–45. The constructs hyPB and H2b-tdT-SRT
(Addgene 203393) were packaged into AAV9 viral particles by the Hope
Center Viral Vectors Core at Washington University. The titer was
determined by qPCR and standardized to 1 × 1013 vg/ml. A step-by-step
protocol for transcranial injections is described in Yen et al.45. Briefly, the
AAVsweremixed 1:1 and transcranially injected into theventriclesofP0-1
pups from MYT1L WT x Het breeding pairs. At P7, toe tissue was col-
lected for genotyping. At P21, the animals were deeply anesthetizedwith
isoflurane and perfused with ice cold DPBS. The brain was harvested,
tdTomato fluorescence was verified using a handheld fluorescence
flashlight (Nightsea Xite-GR), the cortex was dissected, and the tissue
was flash frozen in liquid nitrogen and stored at −80 °C. The tissue was
processed following the “nuclei isolation and fixation” section below.

Nuclei isolation and fixation
In this study, nuclei from E14, P1, and P21 prefrontal cortices were iso-
lated from flash frozen tissue. The samples for this studywere randomly
selected from available banked tissue across 3 litters of E14 animals,
4 littersof P1 animals, and4 litters of P21 animals that havebeengrouped
by genotype. Blindingwas not used sinceweneeded todeterminewhich
samples to process. The brain tissues were Dounce homogenized in ice-
cold homogenization buffer (10mMTris-HCl pH 7.4, 10mMNaCl, 3mM
MgCl2, 1mM DTT, 1X complete EDTA-free Protease Inhibitor (Roche
4693132001), and 0.2U/ul RNasin Inhibitor (Promega N2515)) using a
2ml KIMBLE KONTES Dounce Tissue Grinder (DWK 885300-002) with
15 strokes with the “A” large clearance pestle, followed by 15 strokes of
the “B” small clearance pestle. The homogenate was transferred to a
15ml centrifuge tube.Walls of the homogenizer tubeswerewashedwith
1ml of homogenization buffer and combined with the homogenate in
the 15ml tube. The nuclei were pelleted by centrifugation in a swinging
bucket rotor (Eppendorf S-4-104) at 500× g for 5mins at 4 °C. The
supernatant was aspirated and discarded.

For E14 and P1 samples, the pellets were washed twice with 1ml
nuclei wash buffer (DPBS, 1% BSA, and 0.2 U/μl RNase inhibitor), fil-
tered through a 40μm Flowmi cell strainer (Sigma-Aldrich
BAH136800040), and manually counted using a hemocytometer with
Trypan Blue or propidium iodide (Biotium 40017).

For P21 samples, the pellets after the first centrifugation were
resuspended in 1ml homogenization buffer. Density gradient cen-
trifugation was performed to purify the nuclei from cellular debris and
myelin generated during tissue dissociation. A 50% iodixanol-PBS
working solution was prepared by diluting the stock solution of
60%w/v Optiprep (Sigma-Aldrich D1556) with DPBS (ThermoFisher
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14190136). A 35% (w/v) iodixanol solution was made by diluting the 50%
iodixanolwithDPBS.Tomake the25% Iodixanol layer, 1ml 50% iodixanol
was added to 1ml of the homogenate containing the nuclei and debris.
This was carefully layered on top of 2ml 35% iodixanol in a clear poly-
carbonate tube (Beckman Coulter 355672) and centrifuged using an
Allegra64R (BeckmanCoulter 367586)at 10,000×g for 30minat 4 °C in
a S0410 swinging bucket rotor (Beckman Coulter 364660) with no
braking. After the centrifugation, myelin, and cellular debris remaining
at the top of the 25% iodixanol layer were aspirated and discarded. The
purified nuclei at the interface of the 25% and 35% iodixanol layers were
collected using a low retention P1000 pipette and transferred to a clean
15ml centrifuge tube. The volume was brought up to 6ml with nuclei
wash and resuspension buffer andpelletedby centrifuging at 500× g for
5min at 4 °C. The supernatant was carefully removed, washed oncewith
nuclei wash buffer to ensure removal of carryover iodixanol, filtered
through a 40μm Flowmi cell strainer, and manually counted using a
hemocytometer with Trypan Blue or propidium iodide.

The ScaleBio Sample FixationKit (Scale Biosciences 2020001)was
used to fix the nuclei. For E14 andP21 samples, 500 k–2.5Mnuclei were
resuspended in 500μl calcium andmagnesium-free DPBS and used as
input according to the manufacturer’s standard fixation protocol. For
P1 samples, 100–300 k nuclei were resuspended in 50μl calcium and
magnesium-free DPBS and used as input according to the manu-
facturer’s low sample input protocol. After fixation, the nuclei were
manually counted once more and checked for quality using a micro-
scopewith a 60× objective. The nuclei were then stored at −80 °C until
all samples have been collected and fixed.

Single-nucleus RNAseq library preparation and sequencing
Libraries were prepared from fixed E14, P1, and P21 nuclei sepa-
rately. For the E14 cohort, a total of 9 samples (3 biological repli-
cates of a mix of males and females per MYT1L WT, Het, and KO
genotypes) were used. For the P1 cohort, 12 samples consisting of 8
biological replicates for MYT1L WT and 4 biological replicates for
MYT1L Het genotypes were used. For the P21 cohort, 12 samples
consisting of 3 biological replicates per sex per MYT1L WT and Het
genotypes were used. The day of the library preparation, the frozen
fixed nuclei were thawed on ice and each sample was counted twice
using a hemocytometer.

For the E14 and P1 samples, the ScaleBio Single Cell RNA
Sequencing Kit v1.0 (Scale Biosciences 2020008) was used according
to manufacturer’s instructions. Nuclei from each sample were loaded
at 10,000 nuclei per well to the 96-well Indexed RT Oligo Plate to add
the RT barcode and UMI onto each transcript during reverse tran-
scription. By loading each sample into a distinct set of wells, the RT
barcodes can serve as sample identifiers, enabling all genotypes to be
processed on the same plate in a single batch per age. The nuclei from
each well were then collected and pooled using the Scale Biosciences’
supplied collection funnel, mixed, and distributed across the 384-well
Indexed Ligation Oligo Plate where the Ligation Barcode was added to
each UMI-RT barcoded transcript. Then, the nuclei were once again
collected andpooledusing another collection funnel and countedwith
a hemocytometer with Trypan Blue. A total of 1600 nuclei were dis-
tributed per well of the 96-well Final Distribution Plate. In each well,
second strand synthesis was performed followed by a cleanup step.
The PCR products were then tagmented followed by an indexing PCR
step to add a third barcode to each well. 5ul from each of the 96
libraries were pooled and cleaned using 0.8X SPRIselect beads (Beck-
manCoulter B23317). The average fragment size of the final library was
quantified using a High Sensitivity D5000 Screentape (Agilent). The
library concentration was quantified using the NEBNext Library Quant
Kit for Illumina (New England Biolands E7630S). The libraries were
sequenced on a shared S4 flowcell on a NovaSeq6000 (Illumina)
instrument or a shared 25B flowcell on a Novaseq X Plus (Illumina) to a
target depth of 10,000 reads per nucleus.

For the P21 samples, the protocol described above was followed
through the cleanup step. Prior to tagmentation, 3μl (half of the total
volume) was transferred to a clean 96-well PCR plate to create a Calling
Cards Final Distribution Plate. This plate was set aside to pilot single-
nucleus Calling Cards (snCC) library preparation, the results of whichwill
be reported in a future methods paper. The remaining 3ul was used for
the remainder of the ScaleBio protocol with slight modifications. To
account for the reduced volume of template input, the volumes for all
subsequent steps have been halved to keep all reaction proportions the
same. Additionally, the Indexing PCR programwas increased to 16 cycles
instead of 14. The libraries were pooled, cleaned, and quantified as
described above according to manufacturer’s instructions. This library
pool was sequenced on a shared 25B flowcell on a Novaseq X Plus (Illu-
mina) instrument to a target depth of 10,000 reads per nucleus.

snRNAseq data processing
Base callswere converted to fastq format and demultiplexed by Index1
barcode by the Genome Technology Access Center at the McDonnell
Genome Institute (GTAC@MGI). Combinatorial barcode demultiplex-
ing, barcode processing, adapter trimming, read mapping to the
mm10 reference genome, single-nuclei counting, and generation of
the feature-barcode matrices were done using ScaleRna v1.4 (https://
github.com/ScaleBio/ScaleRna). CellFinder, an EmptyDrops-like cell
callingmethod from ScaleRna v1.5 was applied to account for ambient
RNA and recover nuclei with low total RNA content. The filtered count
matrices were brought into Seurat for downstreamanalyses of the E14,
P1, and P21 groups separately.

For quality control, multiplets were removed by DoubletFinder46,
followed by a UMI-gene cutoff of 800–6000UMIs and 300–3000
genes for each sample. Barcodes with % mitochondrial reads >1 and
logðgenesÞ
logðUMIsÞ <0:9 were removed. After quality control filtering, the E14
dataset contains 216,830 nuclei across all samples, with a median of
3204UMIs and 1819 genes per nucleus. The P1 dataset contains 98,797
nuclei with amedian of 1963UMIs and 1176 genes per nucleus. The P21
dataset contains 96,505 nuclei with a median of 3447UMIs and 1597
genes per nucleus. The count matrices were log2 normalized, cen-
tered, and scaled using a scaling factor of 10,000. The top 3000most
variable genes were identified using dispersion and mean expression
thresholds. Principal component analysis (PCA) was then performed
on the top 100 components followed by dimensionality reduction by
UMAP. We used an iterative unsupervised clustering approach using
the Louvain algorithm. First, we clustered nuclei into the main cell
classes (e.g., progenitors, excitatory neurons, inhibitory neurons, glia,
and other). Then for each class, we performed another round of
clustering to identify the cell types. The cluster resolution was opti-
mized by testing a range of values (0–1.4 in steps of 0.2) and plotted
into a clustering tree using clustree47. Cluster marker genes were
defined by grouping the clusters, setting logfc.threshold =0.5 and
min.pct = 0.25, and comparing the fold changes between pct.1 and
pct.2 using FindMarkers and the Wilcoxon rank-sum test. It is impor-
tant to keep inmind that theWilcoxon rank-sum test is suitable for this
purpose, however, the p values can be inflated and should not be
automatically considered as differentially expressed genes29,30,48. The
identifiedmarker genes were then referenced with marker genes from
well-annotated datasets and the ABC atlas19. For the P21 dataset, the
raw count data was saved in the h5ad format and the hierarchical
mapping algorithm fromMapMyCells (RRID: SCR_024672) was used to
align the nuclei with the 10× Whole Mouse Brain (CCN20230722)
reference. The mapping results were imported into R and annotations
were transferred into the metadata.

Differential gene expression analysis
To identify genesdifferentially expressed inMYT1Lmutants compared to
WT controls in each cell type, we created pseudobulk samples by sum-
ming single-cell expression counts for each gene within each cluster and
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sample combination (e.g., RG_1 x E14-WT-1, RG_1 x E14-WT-2, RG_2 x E14-
WT-1, etc.). We then used these count matrices and associated sample-
level metadata with DESeq2 for differential analysis29–31. To assess whe-
ther the transcriptional response to MYT1L perturbation varied by sex,
we initially tested a design (~sex + genotype + sex:genotype) that mod-
eled both main effects of sex and genotype and their interaction. We
foundno significant sex×genotype interactions for geneson autosomes,
with differential expression between sexes limited to genes on sex
chromosomes. This likely reflects our limited statistical power to detect
sex-specific effects. Given these findings, we proceeded with the more
parsimonious genotype-only model for subsequent analyses. For each
cluster, we created a DESeq2 object using the DESeqDataSetFromMatrix
function with the design formula ~genotype. Count normalization was
performed using the median of ratios method, and the data were trans-
formed for visualization using a regularized log transform. Principal
component analysis and hierarchical clustering ensured sample-level
quality control. No outliers were detected, and no samples or factors
were removed. Thedifferential expression analysis followed the standard
DESeq2workflow: normalizing librarydepthwith a size factor, estimating
gene-wise dispersion, refining the dispersion estimates using the apeglm
method49, and fitting a negative binomial model for each gene. Pairwise
comparisonused theWald test, while the LikelihoodRatio Test evaluated
differential gene expression changes acrossMYT1L genedoses by coding
the number of functional alleles as ordinal factors (0=KO, 1 =Het, and
2=WT).Geneswitha log2 fold changeof at least0.2 andFDR<0.05were
identified as differentially expressed. This analysis was iteratively run for
all cell types.

To calculate the DEG burden per cell type, we downsampled the
data by randomly selecting 700 nuclei from each cell type before
performing the differential gene expression analysis. This process was
repeated 10 times, and the average number of DEGs from these nor-
malized nuclei counts represents the degree of gene dysregulation per
cluster.OPC andMGclusterswere reported as “N/A”due to insufficient
nuclei numbers for downsampling.

Gene ontology (GO) enrichment analysis
Over-representation analysis of the differentially expressed genes was
performed using the clusterProfiler package50. All expressed genes
within a given cluster was used as background and GO Biological
Processes ontology was used. A one-sided Fisher’s exact test was used,
and hypergeometric p values were FDR-corrected using Benjamini-
Hochberg procedures. GO terms with an FDR >0.05 were considered
and redundant termswith an information content > 0.7 were removed
using the simplify function.

Regulatory network inference and analysis
Single-cell Regulatory Network Inference and Clustering (SCENIC)32,51 was
used to reconstruct regulon activity in single nuclei for the E14 dataset.
Regulons, defined as transcription factors and their target genes, were
identified through a multi-step process. First, we performed gene reg-
ulatory network inference using the GRNBoost2 algorithm, inputting a
loom file containing the raw gene expression counts matrix and a list of
mouse transcription factors to generate an adjacencies matrix repre-
senting co-expression modules. Next, we identified candidate regulons
based on transcription factors-target gene interactions and refined these
using cisTarget formotif discovery to eliminate potential indirect targets.
Cell type-specific regulon activity was then computed using AUCell using
an AUC threshold of 0.05 which assesses whether the genes in the sig-
nature are within the top 5% of expressed genes. The resulting AUC
matrix, representing “regulon activity scores” for each transcription
factor for each cell, was integrated into the E14 scanpy AnnData object.
Finally, we subset the data by genotype and computed regulon specific
scores (RSS) for each genotype. This approach enables us to compare
transcription factor activities and cross-reference the differentially
expressed genes across the genotypes at E14.

Pseudotime and trajectory analysis
Pseudotemporal ordering of the E14 and P1 datasets was performed
independently using Monocle337,52. For E14, Cajal-Retzius, MG, and
OPC clusters were excluded from the analysis to focus on the excita-
tory and inhibitory trajectories. For P1, only excitatory neurons were
analyzed. The gene-countmatrix was normalized by log+pseudocount
and size factor to account for sequencing depth differences followed
by scaling. A lower dimensional intermediate was calculated using the
top 100 principal components from the top 5000 variable genes.
Dimensionality reduction was performed using the reduceDimension
function with the following parameters: (n_neighbors = 50, min_dist =
0.1, metric = “cosine”). The nuclei were then clustered and partitioned
using the cluster_cells function. A principal graphwas fit to the data and
the cells were projected onto the graph using learn_graph with parti-
tions. The earliest principal points within the excitatory and inhibitory
trajectories weremanually selected and independently assigned as the
root state for the pseudotime computations.

To assess the effect of MYT1L loss on the timing of gene expres-
sion, the graph_test function with neighbor_graph = “principal_graph”
parameter was used to identify differentially expressed genes along
the trajectory. Genes with a q value < 0.05 were classified as pseudo-
temporal dynamic genes. The dataset was then subset by genotype to
analyze the distributions of nuclei and expression of pseudotemporal
genes acrosspseudotime. To obtain the temporal expressionprofile of
TFs in excitatory neurons, we intersected the gene list from the WT
excitatory trajectory with a list of mouse transcription factors curated
from the AnimalTFDB 4.0 database53. The Kullback-Leibler divergence
(KL Div) metric was used to measure the difference between the
pseudotemporal TF expression distributions and compared to a null
distribution generated by randomly shuffling the genotype labels.

Brain sectioning and immunofluorescence staining
Brain tissues from postnatal day 21 (P21) mice were harvested after
transcardial perfusion with ice-cold PBS followed by 4% (w/v) paraf-
ormaldehyde. The tissues were cryoprotected in graded sucrose
solutions (15% and 30%w/v) and embedded in OCT compound. Frozen
brains were sectioned on a cryostat into 70 µm free-floating coronal
sections and stored in 1X PBS with 0.05% sodium azide at 4 °C.

For immunofluorescence staining, three sections from the ante-
rior, medial, and posterior regions of the cortex were matched and
selected from WT (n= 9) and MYT1L Het (n = 9) animals, totaling
54 sections. Tissues were washed three times with PBS (5min each),
then permeabilized with 0.1% (v/v) Triton X-100 in PBS for 15min at
room temperature. Sections were then incubated in blocking buffer
0.1% (v/v) TritonX-100and5% (v/v) normal donkey serum inPBS for 1 h
at room temperature. Primary antibody incubation was performed
overnight at 4 °C using the following antibodies diluted in blocking
buffer: rabbit anti-DARPP-32 (1:200, InvitrogenMA5-32113) andmouse
anti-NeuN (1:400, Invitrogen MA5-33103). The next day, tissues were
washed five times in PBS (5min each) and incubated for 1 h at room
temperature with the following secondary antibodies diluted 1:400 in
blocking buffer: donkey anti-rabbit Alexa Fluor488 (Invitrogen A-
21206) and donkey anti-mouse Alexa Fluor568 (Invitrogen A10037).
After two more PBS washes (5min each), nuclear counterstaining was
performed using 1 µg/mLDAPI in PBS for 15min. Sections werewashed
once more before mounting on glass slides with ProLong Gold Anti-
fade Mountant (Thermo Fisher Scientific P36930) and coverslipped.
The edges were sealed with nail polish.

Image processing and analysis
Immunofluorescence images were captured using a Zeiss AxioScan
Z1 slide scanner equipped with a 10× objective lens, fluorescence filters
for DAPI, Alexa Fluor488, Alexa Fluor568, and Alexa Fluor647, an Orca
Flash sCMOS camera (Hammatsu C13440-20CU), and a mercury illumi-
nation source (Zeiss HXP120). A center of gravity focusing strategy
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ensured precise stitching of the tissue sections. Tissue margins were
autodetected at low magnification with a 5× objective, and exposure
times were empirically optimized for each fluorophore to maximize
signal intensitywhileminimizingphotobleaching andbackgroundnoise.

Image processing and quantification were conducted by an
investigator blinded to animal genotype. Using ImageJ software, raw
TIF images underwent background subtraction (rolling ball radius = 50
pixels) and unsharp masking (radius = 3 pixels, mask weight = 0.4).
Binary masks for DARPP32 and NeuN channels were created using the
“Make Binary” function, followed by pixel value normalization based
on threshold settings. The “Image Calculator” function was used to
multiply thesemaskswith the originalfluorescence images, identifying
DARPP32 and NeuN double-positive regions of interest (ROIs). Cell
counts were obtained using the “Analyze Particles” function. Once all
images were identically processed, the investigator was unblinded and
the statistical significance of differences by genotype was assessed
using a linearmixedmodel comparison using the R package lme4. The
full model (count ~ genotype + section + (1 | mouse)) was compared to
a reduced model (count ~ 1 + section + (1 | mouse)) using ANOVA to
test the effect of genotype while accounting for section differences
and individual mouse variability.

Statistics
No statistical methods were used to predetermine sample sizes. No
animals were excluded from any analyses. Samples were generally lit-
termates and genotypes were assigned randomly by the sperm at
conception, with no input from investigators. For snRNAseq experi-
ments, investigators were not blinded to the genotypes, however, all
samples were processed in parallel on the sameplates, batched by age.
Detailed descriptions of statistical analyses for specific experiments
are provided in their respective sections above.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw and processed data generated in this study have been
deposited in the Gene Expression Omnibus database under the
accession code SuperSeries GSE262368 and has also been deposited in
the Neuroscience Multi-omic Data Archive (NeMO). The E14 MYT1L
CUT&RUN dataset was downloaded from Gene Expression Omnibus
under the accession code GSE222072. Source data with relevant raw
data for each figure are provided with this paper. Source data are
provided with this paper.

Code availability
The ScaleRna Nextflow pipeline for processing raw Fastq reads to
feature-barcode matrices is available at Github (https://github.com/
ScaleBio/ScaleRna). The code needed to reproduce the key findings of
this paper is found at Bitbucket (https://bitbucket.org/jdlabteam/yen-
et-al-myt1l-snrnaseq/src/main/).
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